Morrey Global Bounds and Quasilinear Riccati Type Equations below the Natural Exponent
نویسنده
چکیده
We obtain global bounds in Lorentz-Morrey spaces for gradients of solutions to a class of quasilinear elliptic equations with low integrability data. The results are then applied to obtain sharp existence results in the framework of Morrey spaces for Riccati type equations with a gradient source term having growths below the natural exponent of the operator involved. A special feature of our results is that they hold under a very general assumption on the nonlinear structure, and under a mild natural restriction on the boundary of the ground domain. Résumé Nous dérivons des bornes globales dans les espaces de Lorentz-Morrey sur le gradient des solution d’une classe d’équations elliptiques quasi-linéaires pour des données faiblement intégrables. Ces résultats sont ensuite utilisés pour obtenir l’existence de solutions dans des espaces de Morrey à des équations de Riccati sous une hypothèse de croissance du gradient du terme source inférieure à celle de l’exposant naturel de l’opérateur. Une particularité de ces résultats est qu’ils s’appliquent sous des hypothèses très générales sur la structure de la non-linéarité, et la frontière du domaine.
منابع مشابه
The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملAnalytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations
This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملSoliton solutions for quasilinear Schrödinger equations involving supercritical exponent in R
where g has superlinear growth at infinity without any restriction from above on its growth. Mountain pass in a suitable Orlicz space is employed to establish this result. These equations contain strongly singular nonlinearities which include derivatives of the second order which make the situation more complicated. Such equations arise when one seeks for standing wave solutions for the corresp...
متن کامل